Vapor-Particle Separation Using Microporous Metallic Membrane in Crossflow Filtration
نویسندگان
چکیده
Simultaneous separation of vapor and particles in industrial processes could be a key step toward manufacturing of high-quality goods. The separation is critical for successful measurement of volatile or semi-volatile aerosol particles, which no reliable technique exists. We have developed a technique for separation of vapor and particles simultaneously using a specialty microporous metallic membrane. The separator allows the thermally denuded particles traverse straight through the membrane tube, while the vapor molecules permeate through the membrane, separate from the particles and are removed subsequently. The separation technique virtually eliminates the possibility of contamination by vapor recondensation. We tested the prototype of the vapor-particle separator (VPS) using aerosols prepared from sodium chloride to represent non-volatile aerosols. Chemical like dioctyl phthalate was chosen to represent volatile particles. The test aerosol particles were generated by an atomizer followed by a tandem differential mobility analyser to produce a stream of monodisperse particles in the size range of 10 to 100 nm. In real world particles, we tested the VPS using diesel engine particles that is a mixture of complex chemical composition. Number concentration of the nonvolatile particles reduced as the temperature increased, but the mode diameter of the aerosol population remained unchanged. Number concentration of the volatile particles was also reduced as the temperature increased, but their mode diameters became smaller as particles shrunk in diameter. Differences in the thermal behaviour of the particles were attributed to its transition energy barrier and evaporation rate. Mass balance analysis suggests the separation of vapor and test particles was reasonably complete. Thus, we conclude the VPS could provide an effective means for quantitative characterization of aerosol volatility and separation of vapors from particles.
منابع مشابه
Fouling mechanisms during protein microfiltration: The effects of protein structure and filtration pressure on polypropylene microporous membrane performance
A polypropylene microporous membrane (PPMM) was fabricated by thermally induced phase separation (TIPS) method. The effects of protein size and structure as well as filtration pressure on the membrane performance and fouling mechanisms were investigated using two different proteins, bovine serum albumin (BSA) and collagen, in dead-end filtration setup. Obtained results showed that, for each pro...
متن کاملCrossflow Filtration of Sodium Chloride Solution by A Polymeric Nanofilter: Minimization of Concentration Polarization by a Novel Backpulsing Method
In the present study, the production of low-salt water from salty water by nanofiltration as well as membrane fouling was investigated. Furthermore, a new method was proposed and tested experimentally for creating the backpulse in order to minimization of fouling and increase of the filtration efficiency. In the proposed method, the permeate was used instead of gas for creating the...
متن کاملFabrication and Charge Modification of Ceramic Membranes Using Copper Nanoparticles for Desalination
Ceramic membranes are considered as alternatives for their polymeric counterparts due to highmechanical strength and thermal resistance; thus long lifetime. Usually, asymmetric ceramicmembranes are synthesized including several layers with different pore size distributionswith the top-layer playing the main separation role. Titania has several properties such asphotocatalytic activity and chemi...
متن کاملSimulation of colloidal fouling by coupling a dynamically updating velocity profile and electric field interactions with Force Bias Monte Carlo methods for membrane filtration.
Pressure-driven flow through a channel with membrane walls is modeled for high particulate volume fractions of 10%. Particle transport is influenced by Brownian diffusion, shear-induced diffusion, and convection due to the axial crossflow. The particles are also subject to electrostatic double layer repulsion and van der Waals attraction, from both particle-particle and particle-membrane intera...
متن کامل